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In this paper, the global metric regularity of the devil’s staircase of topological entropy is discussed by
employing the quadratic map f(x)=1—Ax? as an actual metric model. The generalized dimensions,
singularity spectra, “free energy,” and the similarity between subintervals with an infinite number of
scales in the entropy staircase are calculated. A lower bound 0.86 of chaotic measure in the entropy

staircase is obtained.
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I. INTRODUCTION

We have shown [1] that the devil’s staircase of topolog-
ical entropy is an inevitable conclusion of topological
classification of dynamic symbols (words). Because the
devil’s staircase reveals an algebraical structure (the
Derrida-Gervois-Pomeau % composition) of all admissi-
ble words in the topological space X, of two symbols,
symbolic dynamics becomes a fundamental means for
analyzing 3, space. We also indicate that the devil’s
staircase is universal in interval dynamics because of the
universality of Metropolis-Stein-Stein (MSS) sequences.
However, there is still an important problem of the
metric universality that needs to be resolved. The aim of
this paper is to explore the global metric regularity of the
devil’s staircase. For convenience, the notations and
their meanings in this paper are the same as in Ref. [1].
There, the following characteristics of the devil’s stair-
case are proved by symbolic dynamics [1].

The zero-entropy interval

A=\ UR*'*[L*,R*]
n=0
is located at the left in the A-A space, and the nonzero-

(1.1)

entropy interval is the union of subintervals A,,
n=0,1,2,...,
[R**,RL*]= U A,
nezt
= U R*"«[RLR”,RL"]; (1.2)
nez*

here RLR =R *RL * is the minimal limit of primitive
words. The typical representative of the nonzero-entropy
interval is the primitive word subinterval

A,=[RLR*,RL*], (1.3)

which is located at the right in the space. The h versus A
curve in A, includes an infinite number of equal topologi-
cal entropy class (ETEC) steps. The step corresponding
to the primitive word Q; E?, (7, means the set of all
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primitive words) is

HQi=Qi*[L°°,RL°°], i=12,.... (1.4)
Outside steps on the 4 versus A curve in A, there are an
infinite number of isolated single points, which corre-
spond to infinitely long aperiodic sequences and represent
either fine-grain or coarse-grain chaos under a finite reso-
lution. The A versus A curve in A, possesses a multifrac-
tal structure. This multifractal curve is successively
compressed and made to fill the subintervals A;,A,, ...,
up to the zero-entropy interval Ap, by R*"x (n =1,
2, ..., o). These multifractal curves are similar because
of the uniform compressibility of R %, and combine to
form the complete devil’s staircase of topological entro-
py-

As contrasted with theoretical work, calculating work
on a map is very time consuming because of the enor-
mous number of primitive words. For example, in the
unimodel map

flx,A)=1—Ax2 x€(—1,+1), A€(0,2), (1.5
we spent more than 1000 h of CPU time on a VAX-8350
computer calculating about 5X 10 sequences. Therefore
we can only use (1.5) as an actual example to discuss the
global metric regularity of the devil’s staircase and calcu-
late its thermodynamic functions. In Sec. II, we first
metrize the kneading sequence space, and calculate the
Lebesgue measure of ETEC steps. In Sec. III, we discuss
the multifractal structure with an infinite number of
scales of the primitive word subinterval A,, and calculate
its generalized dimensions, singularity spectra, and “free
energy.” In Sec. IV, we show the quantitative relation of
similarity between nonprimitive word subinterval A,
(n=1,2,...) and primitive word subinterval A,. Final-
ly, in Sec. V, from the above we derive the global metric
regularity of the topological entropy curve, and obtain
the lower bound of the chaotic measure in the entropy
staircase.

1989 ©1995 The American Physical Society
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II. THE LEBESGUE MEASURE OF THE ETEC STEPS

A. The metrization of the kneading sequence space

It is a convenient and natural method of metrization to
take the value of parameter of a kneading sequence as its
metric. For the superstable periodic kneading sequence
WC, the value of parameter Ay can easily be calculated
with the word-lifting technique [2]. Corresponding to
WC, there is a periodic window [3] WL!W
<WC <WR'W) which has period (||W||+1). For given
W, the values of parameter As (and periodic points x;)
corresponding to the lower sequence WL“W) and the
upper sequence WR ‘W) can be found, respectively, while
solving by Newton’s method the systems of equations of
the fixed points and the boundary condition as follows:

fk(x,k)=x ,
. (2.1)
11 f/(x:,0) ‘=1 .

i=1

The mapping function f should be replaced by f~! in
practice so as to determine the unique solution of the pa-
rameter A using the symbolic sequence of either WL W)
or WR'W),

It is not difficult to metrize an aperiodic sequence. For
the Zheng-Hao type of sequence pA*, their values of the
parameter can be determined by the generalized word-
lifting technique [2]. For an infinite aperiodic sequence,
its systems of equations (2.1) can be written formally. In
actual calculation, however, an aperiodic sequence has to
be truncated and made into a sufficiently long symbolic
sequence so as to approach its value of the parameter.

As mentioned above, for a unimodel map, an amdissi-
ble sequence WEW (the letter C in sequence WC is ab-
sorbed hereafter, and W means the set of all admissible
sequences) must have a corresponding value of parameter
Aw, and vice versa. Thus the number of admissible se-
quences is as large as the number of real numbers in [0,1],
all admissible sequences are consecutive, and W possesses
the cardinal number of the continuum. In other words,
an additional admissible sequence can be inserted be-
tween any two admissible sequences, and this can be re-
peated ad infinitum. This property of the topological
symbolic sequences exhibits continuity in parametric
metric space:

lim Ay =Aw, - (2.2)

W, —W, 2
The order in topological space (MSS order) is consistent
with the order in parameter space, namely, if W, <W,,
then kw1<kw2. Therefore we can naturally introduce
the parametric metric of the subset [W;,W,]([W,W,]

means the minimal sequence is W, and the maximal se-
quences W, in the sequence set)

I[Wl,W2]|=Aw2—kW1 . (2.3)
Obviously, the parametric metric || preserves the iso-
morphism between the MSS order and the parameter or-
der.
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B. Calculating the width of an ETEC step

Noting the compressibility of Wx, WeW
=[L*,RL "], we have
|[Wx[L*,RL*]|<|[L*°,RL>]|. (2.4)

Since the topological entropy of a compound kneading
sequence is [1]

h(Q) if Q#R*",

h(Q*S): Elzh(S) if(Q)zR*n’

(2.5)

and taking W as a primitive word Q, we obtain the ETEC
step Hg,

Ho=Q#[L*,RL*"], QEP,. (2.6)

Obviously, Hg, is a compact closed set, possesses the car-
dinal number of the continuum, and occupies the Lebes-
gue measure in the parameter space. After metrizing the
ETEC, the width of step Hy, is

Aw@=IQ*[L*,RL*]|=[[QL"?,QxRL*]|. (2.7

This formula indicates that the left terminal of step Hg,
corresponds to the value of the parameter of the lower se-
quence, and the right terminal to that of Q% RL *. In ac-
tual calculation, RL ® must be truncated and made into
the sequence RL" 2 with period n. We found that a
high precision ( ~10732) is reached when taking n =100.

In numerical calculation of the quadratic map
f(x)=1—Ax? the results indicate that the word RLC
with period 3 has the maximal width

max{Ah(Q)} :Ah(RL):O'O4O3 e ey (2.8)

and that among various primitive words with the same
period || Q|| there is an approximate relation

min{Ah(Q)} ~Ah(RL Ill—2y~" IO'HQ" >

which implies other facts related to the global regulari-
ties.

III. THE METRIC PROPERTIES
OF THE ENTROPY STAIRCASE
IN THE PRIMITIVE WORD SUBINTERVAL

The method described in Sec. II enables us to calculate
the multifractal property of the entropy staircase and es-
tablish its thermodynamic formalism, i.e., calculate its
generalized dimension D,, singularity spectrum f(a),
and free energy. We first calculate these quantities in the
primitive word subinterval A,,.

A. The complementary set A§ and its support A§ .

In A, there are an infinite number of ETEC steps Hq,

[1], the width of which is given by
Ah(Q,»):|Qi*[Lw’RLw:”’ QIE?fr' 3.0

Taking the width of the subinterval A,
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|Aol=|[RLR °,RL *]| (3.2)

as the normalized width, each A, , can be rescaled.

Thus the 4 versus A curve in A, is a multifractal curve [1]
with an infinite number of scales

_ Awgy
Yi= |Aol s

The complementary set AS to the steps in the subinterval
A, is defined as

Q,EP, . (3.3)

Ag=Ac\ U Q;*[L*,RL*].
Q€?,

(3.4)

Since A§ contains all the aperiodic sequences, including
all fine-grain and coarse-grain chaotic sequences under a
finite resolution, it forms a chaotic set. This chaotic set
possesses a very large Lebesgue measure L(AS) [4],
which distinguishes the entropy devil’s staircase from the
Jensen-Bak-Bohr devil’s staircase in the mode-locking
structure for the circle map, where the chaotic set only
has a zero Lebesgue measure [5].

Denoting the number of all primitive words (i.e., steps
in Ay) with period 3—k by N, the complementary set to
the ETEC steps with period 3-k is

Ny
AngAO\iL:JlQ,-*[Lw,RL‘”], QE?, 3=|Qll=k,

(3.5)

which is the support of AS and can be covered with
NE=N,+1 subintervals in the A axis. Denoting the
width of these coverings rescaled by the normalized
width |Ao| by Iy,15,. .., Iy, 4, which are the multiscale
of the A§ ;, thus for finite N,
N¢
0< Y I;<1, 0<I;, i=1,2,...

i=1

,NE (3.6)

and

: C —AC
lim Ag,=Ag .
k— o0

B. The generalized dimension D,
and singularity spectrum f(a)

There are two methods for calculating the generalized
dimension D, and singularity spectrum f(a) of the

é

chaotic set Ag -

1. The Halsey method

This is an indirect method which determines D, by
Newton’s method from the following sum rule [6]:

NC
k pf

T =1,
i=1 Ii

(3.7
where 7=(q —1)D,,p; is the probability corresponding
to the ith covering with normalized width scale /;, and
pi=1/NF=1/( N, +1), if the homogeneity of the chaotic

TABLE I. The value of Dy and D, in the map f(x)=1—Ax?
(by the Halsey method).

k NE D, D,
3-11 196 0.9706 0.8378
3-12 355 0.9730 0.8352
3-13 670 0.9756 0.8406
3-14 1237 0.9773 0.8397
3-15 2322 0.9790 0.8423
3-16 4339 0.9804 0.8430

set is taken for granted. In practice, when our calcula-
tion went as far as k =16 (N, =4338), satisfactory results

were obtained. We have
D (A§)=~D,(Af 1) - (3.8)

When g =1, the formula (3.7) becomes invalid. The
value of D can be calculated directly from the formula

N
2 pilopi e ne

p, = =— (3.9)
>p;Inl; > Inj;

Table I gives the numerical results for D, and D, in
the computer experiment of the quadratic map
f(x)=1—Ax2 The curve D, versus ¢ (—30<g <30) is
drawn in Fig. 1. The singularity spectrum f(a) can be
found from D, according to the Legendre transformation

fla)=qga—T1, (3.10)

where a=d7/dq. The result is drawn in Fig. 2 (dashed
line).

2. The Chhabra-Jensen method

There are many elements in the support Ag x- Using
“boxes” of size ! to cover the members of Ag, x> and
denoting the probability in the ith “box” by p;(l), we
have

FIG. 1. The curves D, vs g in AS. The solid line is by the
Chhabra-Jensen method; the dashed by the Halsey method.
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FIG. 2. The singularity spectrum of A§ in the map
f(x)=1—2Ax? by the two methods.

InY pi(I)
=N _——i .
D, i q—1 In! ’ 311
> pi(Dnp; (1)
D, =lim — (3.12)

According to Chhabra and Jensen [7], in actual calcula-
tion we need not take the limit / —0 but take the mean of
I,sasl,

N
2k
i=1

= . 3.13)
NE (

Then the probability reads

i

2l
j

Obviously, 3;p;=1.

While calculating the singularity spectrum f(a), in-
stead of the Legendre transformation, we may construct
a family of single parameters with the normalized mea-
sure

pi(= (3.14)
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The mean of the singularity is
> pilg, Dinp; (1)

a(q)Z}I—Ig nl (3.17)
When g =1, u,;(1,1)=p,(1), we have
fla(l))=a(1l)=D, . (3.18)

The results are exhibited in Fig. 2 (solid line). Some nu-
merical values of D, of special meaning are given in
Table II.

Both methods give consistent results. The compar-
isons between curves of D, -g and f(a)-a are also shown
in Figs. 1 and 2, respectively. Nearly identical numerical
results for Dy (~0.98) are obtained by these two
methods. Theoretically, however, D, should be 1 be-
cause L(Ag )>0. It is easily found from formulas (3.6),
(3.13), (3.14), and (3.11) (taking g =0) that

InNfg
= <1.
InN<+ ‘anI,-’

D, (3.19)

Since Nf is a finite number, D, <1 is inevitably obtained

by the Chhabra-Jensen method. On the other hand, by

the Halsey method, the result D <1 is also obtained be-
cause
NE NE b

0< ¥ I<1, I °=1.

i=1 i=1

(3.20)

Therefore the fact that the numerical result Dy <1 is ob-
tained is not due to the limitations of the computer, but
the impossibility of carrying on the calculation
indefinitely. From (3.19), it is seen that while Nf— o,
D,—1. We believe that D;~=0.98 is a good approxima-
tion to the theoretical value. We will only use the results
of the Chhabra-Jensen method hereafter.

C. The free energy in the chaotic set A§

According to Feigenbaum [8] the thermodynamic
functions D, and 7 belong to the microcanonical ensem-
ble for the system of dimension in the chaotic set A§.
They can be transferred to the canonical ensemble by free

q
wilg, = piD , (3.15)  emergy F(B) which is defined asymptotically as
Z piI) N
/ (NOYFB =318, (3.21)
and directly compute the singularity spectrum i=1
> wilg,Dinp;(q,1) if Nkc—» 0, F(B) becomes independent of NF. The rela-
f(g)=lim i (3.16) tion of the microcanonical ensemble functions to the
1-0 In/ ) canonical ensemble quantities is as follows:
TABLE II. Some special values of D,.
D, = f(a(l))
Method Do=f(a(0)) =a(1) D_,=ay, D, =am,
Halsey 0.9804 0.8430 2.109
Chhabra-Jensen 0.9837 0.8138 2.180 0.450
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g=—F(B), 7=(g—1)D,=—p. (3.22)
Thus, the free energy F(/3) in the chaotic set Ag is
F(B)=B/D,—1. (3.23)

The curve F(f3) versus B in Ag is shown in Fig. 3, and ap-
proaches a broken line formed by the following two lines:

lim F(B)=——B—1~2.208—1,

gt D, (3.24)
lim F(B)=——B—1~0.458—1 . (3.25)
4> D_.,

IV. THE METRIC PROPERTIES
OF THE ENTROPY STAIRCASE
IN THE NONPRIMITIVE WORD SUBINTERVAL

From the expression of the nonprimitive word subin-
terval

A,=R*"«[RLR*,RL*], n=12,..., 4.1)
and the formula of the topological entropy
h(R'"*S)=%h(S) , 4.2)

it is easily seen that the topological entropy decreases by
a factor of 1 as A, changes to A, ;. On the other hand,
because of the compressibility of R * the width of a sub-
interval should decrease by a factor of & from A, to
In actual calculation of the quadratic map
f(x)=1—Ax2, taking Q; over 4338 primitive words with

An+1'

1993
periods 3-16, we found that
lim Burerra) = lim 14, =8(R)=4.6692. . . .
n— oo Ah(R*(n+1)*Qi) n—w |A, 1]

(4.3)
Thus there is similarity between the subintervals

Ag~Ay~ - ~A, ~A, 1~ ", n=0,1,2,....
(4.4)

Since there is the multifractal property in A, it is obvious
due to the above-mentioned similarity that there is also
the multifractal property in each nonprimitive word
subinterval A,, n =1,2,.... Moreover, we can antici-
pate that

Dy(AS)=Dy(AS)=Dy(AS)= - - =Dy(AS), n€Z™ .
4.5)

By the Lipschitz transformation theorem [9], if G ER",
map g:G —R" satisfies the conditions

Cilu —v|Zlgu)—gW)| 2 Cylu —v| ,

u,VEG and 0<C;=C, < ;
then Dy(g(G))=Dy(G). Taking g to be the compression
map R %, employing the parametric metric in Sec. II, for

any two words Q;<Q,, Q;,Q,EA,, the following in-
equality holds:

C, l[Qsz]l <|[R *Q;, R *Qz]l = Czl{Qsz]' , 4.6)

30.00 - NS =
F(8)
10.00 -
FIG. 3. The free energy curves F(f3) vs B in
A§, Af, and A{ by the Chhabra-Jensen
method.
-10.00 -
-30.00 T T T 1
-15.00  5.00 25.00 45.00 65.00

g
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TABLE III. The numerical results for Dy, D,,D__,,and D, .

Interval Halsey method Chhabra-Jensen method

DO Dl DO Dl D*oozamax D+w=amin
AS 0.9804 0.8430 0.9837 0.8138 2.1800 0.4500
Af 0.9792 0.8791 0.9821 0.8401 1.6413 0.4480
A§ 0.9792 0.8730 0.9822 0.8339 1.7207 0.4468

where the constants C; and C, are chosen in the neigh-
borhood of the Feigenbaum constant 8(R). We then
have formula (4.5). This conclusion is verified by
3X4338 numerical data on the quadratic map, as shown
in Table III and Fig. 4. It is seen in Fig. 4 that the curves
D, versus g (n=0,1,2,) merge when g =0 and separate
when g <0. That is to say, the formula (4.5) still holds
when g > 0:

D (A§)=D,(Af)=D,(Af)=--- =D,(AS), n€Z" .

4.7)

This fact indicates that the relation of similarity (4.4) be-
tween the subintervals is useful only when ¢ =0. This is
helpful to our understanding of the meaning of the gen-
eralized dimensions D, of ¢ <0.

Correspondingly, the curves f (a) versus a (n=0,1,2)
in Fig. 5 merge when a values are small and separate
when a values are large. It is seen in Fig. 5 that the
curves f (a) versus a are different in width, even though
they are the same in height (Dy;=1). Therefore the
singularity spectrum f(a) at large a is important for
describing the multifractal structure of the entropy stair-
case.

Similarly, the broken lines F(f3) versus B(n =0,1,2) in
Fig. 3 merge when 3 <0, i.e., the line (3.24), and separate
when 3>0. When n=1,2, we have

1

lim F(B)=—B—1=0.618—1, (4.8)
g—— o D—eo,]

lim F(B)=;B—I%O.SSB—I . 4.9)
g—>—x® D—oo,2

FIG. 4. The comparison between the curves D, vs g in AS,
A€, and A{ by the Chhabra-Jensen method.

It is an important result that the curves F(f3) versus 3 are
linear in limiting cases.

V. THE GLOBAL METRIC REGULARITY
OF THE DEVIL’S STAIRCASE
OF TOPOLOGICAL ENTROPY

Summing up the discussion on subintervals A,,
n=0,1,2, ..., of which the complete devil’s staircase of
topological entropy consists, the following conclusions
about the global metric regularity of the devil’s staircase
of topological entropy are reached from our numerical
calculation.

(1) When g =0, each subinterval A,, n=1,2,...,
possesses a similar structure to that of A,. The general-
ized dimension of the complementary set of the complete
entropy devil’s staircase should be equal to the general-
ized dimension of the complementary set of any subinter-
val:

D, (AS)=D, [ éJZ+Af]=Dq(Af), g0, (5.1
Dy(A€)=D, [ éJﬁAf]:l . (5.2)

When g <0, the curves D,-q in subintervals Ao, A,, and
A, will separate by the numerical calculation. It is an in-
teresting problem to rescale these curves so that they may
merge.

(2) The complementary set to the steps in each subin-
terval A,, n=0,1,2,..., is a chaotic set. Because a
ETEC step still contains a coarse-grain chaotic set such
as Q;*P .06 (Ponaos means the set of all chaotic se-
quences), only the lower bound of the normalized Lebes-

10}
os |
oes |
f(e)

04 |

02}

0.0

FIG. 5. The comparison between the singularity spectra of
A§,Af, and Af by the Chhabra-Jensen method.
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TABLE IV. The normalized Lebesgue measure of N;* steps

with the same period k in A,

k N 2 An,” 18l

3 1

4 1

5 3 0.023 748

6 3 0.000772

7 9 0.006 571

8 13 0.001 545

9 27 0.001 948
10 45 0.000 396
11 93 0.000 827
12 159 0.000287
13 315 0.000 301
14 567 0.000 143
15 1085 0.000 102
16 2017 0.000073
gue measure of each complementary set

L(AS)=1— 3 Ah(R*,,*Qi)/IA,,I (5.3)

QiET’”

can be obtained. The normalized Lebesgue measures oc-
cupied by steps of primitive words with the same period
in the subinterval A, are given in Table IV. From the
table, it is seen that as the period k increases the number
of primitive words under consideration increases sharply.
However, the normalized Lebesgue measures occupied by
steps of primitive words with a high period are very
small. Thus an approximate lower bound of the chaotic
measure can be obtained by the truncation method. The
numerical results of L (Ag « ) are shown in Table V. The
mean of the lower bound of the chaotic measure in the
entropy staircase is

TABLE V. The numerical results of L (A§ ).

k NE L(AS,)
3-4 3 0.906 777
3-5 6 0.883029
3-6 9 0.882256
3-7 18 0.875 686
3-8 31 0.874 141
3-9 58 0.872193
3-10 103 0.871797
3-11 196 0.870970
3-12 355 0.870 682
3-13 670 0.870382
3-14 1237 0.870239
3-15 2322 0.870137
3-16 4339 0.870064

L(AS)=L [ U Af]=o.86 . (5.4)

nezt

(3) In the above numerical calculation, the quadratic
map f (x)=1—Ax? is employed as an actual example. In
other maps of quadratic maximum, such as
f(x)=A'x(1—x) and f(x)=A"sinwx, the lower bounds
should also be around 0.86 even though the widths of the
steps in different maps may change. In the case of the
map of z-order maximum f(x)=1—A|x|? the structure
of the entropy devil’s staircase is still the same, but its
global metric properties, such as D,, f(a), and L (A°),
will change. This will be discussed elsewhere.
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